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Abstract  

 

When investigating the behaviour of non-linear systems it is useful, at a fairly early stage, to 

be able to model them. Many simulation systems on the market will supply some standard 

non-linearities in their range of functions but often these are not sufficiently flexible to mimic 

the system under investigation. In this paper a straightforward method is presented which can 

mimic any non-linearities which possess real describing functions to a high degree of 

accuracy. The method utilises a fuzzy logic control system approach which uses Sugeno type 

one rule-bases and triangular fuzzy input sets which are just touching. The technique has 

proved to be easy to apply and to be a convenient method of actually designing non-linear 

effects into a system.  Most discussions of non-linear modelling are content to simply find a 

method of predicting the ranges in which linear behaviour will still apply, or to predict where 

limit-cycles are likely to occur so that they can be avoided.  In this paper a method of actually 

using the ability to create non-linearities to nullify the undesirable effcts which already exist 

in a system has been discussed. 

 

Keywords-  non-linearity; fuzzy sets;  describing funtion; limit-cycle. 

 

I. INTRODUCTION 

 

The main thrust of this research has been to investigate the control of non-linear systems.  

That is to say, to investigate the control of the non-linear parts of those systems with the aim 

of understanding them sufficiently to be able to design non-linear efects  Most of the early 

literature [1,2,5] deals with the characteristics and parameters of the various non-linearities 

which exist but beyond delineating their behaviour the emphasis has always been to mitigate 

the effects they have on the rest of the system.  Even if that means operating the systems in 

‘safe’ regions where the non-linear effects have little impact.  This research has been 

concentrated on the non-linear effects themselves to see how they can be incorporated into the 

general control process. 

 

Because the investigation is concerned with features of the non-linear effects that have largely 

been ignored it has been necessary, initially, to go back to the early work of the 1950s and, 
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with the aid of more modern techniques, to build up a more comprehensive picture of how 

such  effects operate and to see if there are any hidden patterns which might help in 

understanding them and which might eventually aid in the custom design of some of their 

more desirable features. 

 

An early discovery was the usefulness of the describing function technique [2,3] for this work 

and a general approach was developed to derive these functions.  The authors started by using 

this general approach and developed an algorithm [4] which enabled the rapid generation of 

real describing functions.  In this paper the algorithm is briefly outlined and used to develop 

the describing functions for two non-linear systems, one of which possesses dead-zone plus 

saturation and therefore can exhibit a single limit-cycle and another which possesses four 

break-points and so can cause two nested limit-cycles to be produced.   

 

The stability of these non-linear systems is discussed in terms of the cross-over points of their 

describing functions and the inverse-Nyquist diagrams of their respective linear sections.  

Kochenburger’s Criterion [2,5] has then been used to predict the frequency and the 

magnitudes of the limit-cycles.  In certain cases the describing function approach does not 

reliably predict all the limit-cycles which might exist [13].  However since our aim has been 

to manufacture non-linearities which have the properties which we desire the encountering of 

unexpected limit-cycles has not been a problem.  Since only real describing functions have 

been considered, there can only be one frequency of oscillation at which any limit-cycle can 

occur for a given linear transfer function and whenever a system possesses more than one 

limit-cycle they must appear nested on the phase-plane diagram.  The use of fuzzy-control 

techniques to create the non-linear effects is discussed in detail and a template explained 

which can then be used in their development.  The simulations were then run using the 

SIMULINK package and the magnitudes and frequencies of any limit-cycles produced were 

measured.  The predicted and simulated results are compared and this is followed by a general 

discussion and critique of the simulation technique itself. 

 

 
 

II. DESCRIBING FUNCTION 

 

A more up-to-date form of the usual harmonic approach to designing describing functions 

was used [2].  However, the theoretical formulation was confined to those non-linearities 

which produced real describing functions only, i.e.: to those non-linearities which did not 

possess memory.  This simplification enabled an algorithm to be formulated [4] which 



 
G.F. Page, S.S.Douglas and J.B. Gomm  

considerably reduced the calculations necessary to derive individual describing functions and 

enabled the rapid investigation of large groups of non-linearities and the observation of 

patterns of behaviour not so easily seen when only a few samples are available.  

 

A. The Algorithm    

 

A basic assumption is that the non-linearity can be broken up into (n-1) linear sections with 

slopes 𝐾!𝐾!⋯𝐾!⋯𝐾!  with sudden changes in slope (called break-points in this work) 

occurring at horizontal positions 𝑃!𝑃!⋯ 𝑃!⋯ 𝑃!  (with a 𝑃!  at the origin if necessary).  

Although the algorithm specifically deals with discrete cases it can easily be extended to deal 

with continuous functions. 

 

Start: 

 

If Coulomb friction or relay action is present the algorithm starts at stage one, otherwise is 

should be started at stage two. 

 

Stage One:  

(a) If Coulomb friction or relay action is present then 
X
Q
π
4

 becomes the first term of the 

describing function, where Q is the value of the Coulomb friction term. 

(b) If dead-zone is also present scale the term above by 
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 where P is the dead-

zone break-point. 

 

Stage Two:  

(a) If saturation is not present then nK becomes the first term of the describing function. ( nK

is the gain of  the last stage of the non-linearity) or it is added to the result of stage one. 

(b) If saturation is present then set Kn = 0. 

 

 

Stage Three:  

(a) If there are n  breakpoints then add n  terms of the form 
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(b) If saturation is present then the last of the terms in stage 3(a) becomes 
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Finish. 

 

B.    Stability 

 

If the describing function is represented by 𝑁(𝑋,𝜔) and the open-loop transfer function of a 

system is represented by 𝐺(𝑗𝜔) then Kochenburger’s Stability Criterion [4, 5] states that, in 

order for a system to remain stable, the locus 𝐺(𝑗𝜔)  must keep the entire locus –

𝑁(𝑋,𝜔) !! on the right; or the inverse locus 𝐺(𝑗𝜔) !! must keep the locus – 𝑁(𝑋,𝜔)  on 

the left (or it must completely enclose the whole of the locus).  For this work the authors 

found that the inverse Nyquist approach was intuitive and considerably simplified 

calculations.  Furthermore, since only systems with real, as opposed to complex, describing 

functions were being investigated, plots with real and imaginary axes were of little use.  It 

was better to plot the magnitude of the describing functions against the magnitude of the input 

signal and superimpose on this the magnitude of the inverse Nyquist value at which it crossed 

the real axis.  The position at which the descending describing function locus crosses the 

inverse Nyquist value then enables the magnitude of the limit-cycle to be determined, as 

shown in Fig. 1, and the frequency of the oscillation is that at which the Nyquist plot is 

entirely real. 

 
 
 

III. SIMULATION OF THE NON-LINEAR EFFECTS 

 

For the current research work the attraction of fuzzy control systems is that they are 

inherently non-linear and can themselves exhibit the range of features of classical non-linear 

systems.  Also there has been some success in using the describing function  method for the 

stability analysis of PI and PD fuzzy controllers [7, 9, 10].  Furthermore, fuzzy logic 
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techniques provide a method of modifying the actual shapes of signals by design.  This was 

the whole aim of the investigation and is something which it is not easy to do by other means.  

 
The standard fuzzy controller design, Fig. 2, stems from the original one developed by 

Mamdani et al. [8].  He used a signal and its derivative as the inputs and this could be 

generalized to a group of input signals, each signal representing a different physical quantity.  

In our initial investigations we have only considered the non-linear behaviour of a single 

quantity and, since we are not considering non-linearities with memory at this stage , there is 

no need to look at its derivative.  In these circumstances the system reduces to a single input 

set.  It might be argued that Mamdani’s fuzzification system is not needed in such a case but 

we have continued with the use of a pseudo-fuzzifier for three reasons: (i) the Matlab fuzzy 

toolbox provides the most convenient way in which to implement our non-linear control 

paradigm and if we should need to design a system which had greater precision then the fuzzy 

logic approach makes for very easy design using any general purpose programming language,   

(ii) when we come to look at non-linearites with complex describing functions two inputs are 

necessary, the original and its derivative, and then the full power of the fuzzy approach is 

needed.  

 

Although the non-overlapping input sets adequately defined the linearities with sharp, clearly 

defined, non-linear break-points it is necessary to cope with the value at which the break-

point occurs by making one end of each of the defined sets include that point.  If this was not 

done then the existence of the undefined point caused sharp spikes to appear at the output. 

However, if the triangular inputs overlap slightly - by no more than about 5%, then the 

situation is produced in which one pseudo-linear range smoothly morphs into the next – 

which more accurately reflected real-life conditions, although the just-touching approach was 

used for the design work.   

 

The basic Mamdani design [8] for a rule-base is a linguistically-based system and does not 

lend itself easily to mathematical manipulation.  The Takagi-Sugeno-Kang [11] method is 

much more mathematically and, more importantly as far as this research is concerned, much 

more geometrically tractable than Mamdani’s.  In a zero-order Sugeno system a typical fuzzy 

rule has the form: 

 

If input x is a fuzzy singleton in set A and input y is a fuzzy singleton in set B then output z = k 
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where A  and B are pre-defined input fuzzy sets and k is a constant.  So all the output 

membership functions are singleton spikes.  For the purposes of this research the zero-order 

system was not flexible enough.  In a first-order Sugeno system the rules have the form: 

 

If input x is a fuzzy singleton in set A and input y is a fuzzy singleon in set B then output 

 z = m*x+n*y+c 

 

where m, n and c are constants.  The design of non-linearities with real describing functions 

only require a single input.  So the rules for a first-order Sugeno system reduce to the form: 

 

If input x is a fuzzy singleton in set A then output z = m*x+c. 
 

 
IV. A TEMPLATE 

 

In order that the non-linearities could be easily designed using the technique described, a 

template, Fig. 3, was devised in which all the important features of each design could be seen 

at a glance. 

 

The template starts with the fuzzy, type one, triangular inputs which are just touching.  The 

number of inputs required is determined by the number of break-points which are required 

together with the end-of-range values.  Since linearities which are symmetrical about the 

origin are being investigated, the pattern of fuzzy sets will also be symmetrical about the 

origin.  Also the fuzzy sets at each end define the range of inputs to which each system will 

be able to respond.  The range must be chosen to be large enough to ensure that all signals of 

interest will be able to enter the system without being out-of-range and therefore not defined 

as far as the software is concerned.  The result of such a scenaro would be that the output 

would be completely spurious and unrelated to the actual true state of affairs. 

 

The outputs obey the Sugeno type 1 arrangement.  The output between each pair of break-

points is a straight line given by an equation of the form y=Kx+C in which K represents the 

slope of the straight line and constant C is that value which satisfies the corresponding values 

of x and y at the start of that particular linear, or pseudo-linear, section.  The rulebase is a one-

to-one correlation between inputs and outputs taken in order. 
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Finally, the template shows the shape of the fuzzy rule-surface which, with this design 

arrangement, should correlate exactly with the shape of the non-linearity which would be seen 

if a unit ramp were input to this designed module in an open-loop arrangement. 

 

 

V. THE SIMULATIONS 

 

Two examples are presented (i) dead-zone plus saturation which can cause a single limit-

cycle to be produced and (ii) a non-linearity which has four break-points (five pseudo-linear 

regions) and so can  cause two nested limit-cycles.  In each case the describing function was 

calculated using the algorithm already outlined and the non-linearity was placed in series with 

a third-order transfer function 𝐺 𝑠 = 𝑠! + 5𝑠! + 6𝑠 + 1 !! and unit feedback then applied.  

Kochenburger’s approach was applied together with the simplified graphical approach of 

Fig.1.  This was then used to predict the frequency and amplitude of the limit-cycle 

oscillations.  The fuzzy logic approach was then used to design the non-linearities and these 

were then incorporated into SIMULINK diagrams in series with the transfer function G(s) 

above, again with unity feedback.  The actual SIMULINK oscillations were then compared 

with the predicted results from the describing function information. 

 

 

A. Dead-zone plus saturation 

 

This example is adapted from [12].  For the caculations using the algorithm the parameters 

are  0,,0,2 210 ==== KKKKn  .  Stages two (b), three (a) & three (b) of the algorithm 

apply to give: 
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This result is shown graphically in Fig. 4. 

 

 

For the non-linear design the template in Fig. 3a was used, with the input being defined over 

the range ±10.  Five input sets were used: two trapezoidal NB and PB, and three triangular NS, 

ZE and PS; with breakpoints at -1.5, -0.5, 0.5 and 1.5.   The one-to-one rulebase was as 

shown in the template, the outputs OPB, OPS, OZS, ONS and ONB being the straight lines 

defined in the ranges given by the breakpoints and the overall range values.  The actual 
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parameters of the output sets are shown in Fig. 3b.  The resultant non-linearity was the rule-

surface shown in Fig. 3a. 

 
The calculated magnitude of the limit-cycle, from Fig. 4, is 1.79 ± 0.02 .  The actual 

magnitude of the limit cycle, from Fig. 5, is 1.78 ± .03.  The calculated frequency of 

oscillation is 2.45 ± 0.001 rad/s and, from Fig. 5, the measured frequency of oscillation, with 

and without input overlap, is 2.44 ± 0.03 rad/s.  The graphs showing the actual limit-cycle 

oscillations were indistinguishable when simulations were run with or without the input sets 

overlapping, provided the overlapping was small.  The simulations broke down and produced 

spurious results if the overlapping was more than 5%  These simulations were run several 

times and mean values of the output measurements in the non-overlapping cases calculated.  

 
 
B. Non-linearity with four break-points (five slopes) 
 

There were several possible combinations of pseudo-linear slopes which could have been 

used for this non-linearity; the one that was chosen exemplified some of the more important 

features of this type.  For the algorithm the following relative values of the slopes were used: 

𝐾! > 𝐾!,𝐾! < 𝐾!,𝐾! > 𝐾!  𝑎𝑛𝑑  𝐾! < 𝐾! , which gave, as the describing function, 
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This characteristic presents a slightly different situation to the previous case.  Now there are 

two positions at which a limit-cycle may occur, Fig. 6, the first at 1.8 ± 0.05 and the second 

at 5.05 ± 0.05.  However, looking at the right of the graph, a critical point is marked at 

9.85 ± 0.3.  In this case it is possible for a rising value of the describing function to cross the 

inverse Nyquist locus a second time.  This holds out the potential for instability if the input 

signal rises higher than this critical value.  There is also a (less) critical point at about 3.41.  If 

the input signal is higher than this value the system enters a region in which the gain is greater 
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than unity.  The result will be that as the error signal is swept around the loop its value will 

continue to increase until the second limit-cycle position is reached.  So the input signal does 

not have to reach a value of 5.08 to initiate the second limit-cycle oscillation;  all that is 

necessary is that it is higher than the first critical point and it will automatically be amplified 

to the second limit-cycle value.  

 

In order to design the fuzzy equivalent of this describing function the template in Fig. 3 was 

modified to include nine input and nine output sets.  When used in simulation with third-order 

transfer function as in the first example, the graphical output shown in Fig. 7 was produced.  

From this graph the measured frequency of the  limit-cycle oscillation was 2.41 ± 0.07 rad/s 

which compared with the calculated frequency of 2.45 ± 0.001 rad/s.  Two limit-cycles were 

present, the actual magnitude of the lower being 1.85 ± 0.26  and that of the higher 

4.90 ± 0.26.  To see if the second critical point existed, the simulation was run with 

increasingly higher inputs and it was found that above 9.70 ± 0.26  the output became 

unstable with the amplitude rising uncontrollably.  A lower critical point was also seen but its 

position appeared to be more variable at 4.1 ± 0.5. 
 

 
 

VI. CONCLUDING REMARKS 

 

The use of this simulation enabled discontinuous non-linearities which have straight sections 

between break points to be easily designed.  Further it was found that the technique could be 

extended to continuous non-linearities.  The authors are not aware of any other technique 

which allows non-linear system to be designed in such an easy and straightword manner.  

Although examples of the design of only two representative non-linearities have been 

presented, the technique has been applied to a considerable range of real and simulated non-

linear systems and the simulated results have consistently agreed closely with real-world 

situations.  Furthermore, the technique has allowed a sufficiently large range of non-

linearities to be rapidly developed for it to be possible to identify patterns between them 

which were not previously obvious or have not been reported in the literature – work which 

has stimulated further research.  Although the technique has only been been demonstrated in 

this paper for systems which have real describing functions it can quite easily be applied to 

non-linear systems which possess memory and therefore have complex describing functions.  
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Fig. 1: A real describing function locus with an 
inverse Nyquist magnitude superimposed on it. 
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Fig.: 2: A typical fuzzy control arrangement 
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INPUT 

NB             NS          ZE          PS               PB 

Lower Limit         P-2        P-1          P1          P2       Upper 
Limit 

OUTPUT OPB      [ K2    C2 ]      Z= K2 X + C2 
OPS [ K1    C1 ]      Z= K1X + C1 

OZS [ K0    C0 ]      Z= K0 X + C0 
ONS [ K-1   C-1 ]      Z= K-1 X + C-1  
ONB [ K-2   C-2 ]      Z= K-2X + C-2 

RULEBASE 

If input is NB then output is ONB 
If input is NS then output is ONS 
If input is ZE then output is OZE 
If input is PS then output is OPS 
If input is PB then output is OPB 
 

RULESURFACE 

                                 K-2            K-1          K0              K1             K2 

1 
 
 
 
 
 
-1 Slopes of straight 

 sections 

 Fig.3a: An exemplar template for the design of a fuzzy non-linear function, 
(dead-zone plus saturation in this case). 

 
  OPB     [ 0,   1      ]   z = 1 
  OPS     [ 1,  -0.5   ] z = x – 0.5 
  OZS     [ 0,    0     ] z = 0 
  ONS     [ 1,  0.5    ] z = x +0.5 

ONB    [  0,   -1     ] z = -1 
 
Fig.3b: The output sets for dead-zone plus saturation 

Fig.6:	
  Limit-­‐cycle	
  oscillation	
  with	
  saturation	
  and	
  dead-­‐zone	
  

 

Fig. 4:  Describing function of dead-zone plus saturation  



 
G.F.Page, S.S.Douglas and J.B.Gomm                                                     

 

 
Fig. 6: Describing function for the four-breakpoint non-linearity 
 
 
 
 

 
Fig. 7: Fuzzy four-breakpoint response showing two limit-cycles 
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