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Abstract

Many of the features of the behaviour of non-linear systems can be
investigated by superimposing describing functions onto inverse Nyquist
diagrams. For instance, the existence and properties of limit-cycles can be
predicted in this way. It naturally follows that if other non-linear systems
could be created whose describing functions could cancel out the effects
of the original functions then an effective method of controlling non-linear
behaviour would have been developed. In this paper a technique for cre-
ating these ’inverse’ describing functions is presented and it is shown that
when such functions are placed in series with the original non-linearities
they can completely cancel out their effects.

1 Introduction

When a system possesses both linear and non-linear features the classical ap-
proach has been to treat the two areas quite separately, as shown in Fig.1.
Usually the characteristics of the non-linearity or non-linearities, have been
carefully determined so that the input parameters of the system can be chosen
so that the plant or process operates entirely outside the region in which they
appear. The arsenal of control procedures are then brought into play on the
linear part of the system. The non-linearity has been effectively isolated and the
system sanitized so that it, hopefully, operates like a well-behaved purely linear
system. Unfortunately such sanitization does not always work. Sometimes a
linearization procedure has to be undertaken [1] and/ or several control rules
determined for strictly specified linear ranges.

In all of the above, no attempt has been made to control or modify the
behaviour of the non-linearity itself. In this paper it is shown that by using
describing function techniques it is possible to modify the characteristics of the
non-linearity so that the undesirable features are either reduced in effect or else
moved to a less sensitive operating region.

Certain types of non-linear system [2] can exhibit a phenomenon known
as limit-cycle or spontaneous oscillation and this effect has been of particular
interest as far as this research is concerned. There is a related effect known as
jump-resonance but this is not as serious a problem and is more easily controlled.
Limit-cycling is quite distinct from ordinary resonance and is independent of
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Figure 1: System in which the linear and non-linear sections are treated sepa-
rately

the frequency content of any input signal. It is a property of the architecture
of the nonlinear system itself and occurs spontaneously when the amplitude of
the signal enters a certain critical range. This critical range may exist at low
amplitudes but not at high, at high amplitudes but not at low; or it may even
exist for one or more intermediate ranges of amplitudes. When a limit-cycle
occurs, the affected system goes into a stable sinusoidal, or even non-sinusoidal,
oscillation with an amplitude and frequency which are characteristics of the
architecture of the individual system itself and are in no way connected to the
frequency and amplitudes of any inputs.

The fact that the linear and non-linear elements could be treated separately
gradually led to the development of the describing function approach [3] and
when this was combined with classical control methods, in particular Nyquist
diagrams [3] [4] [5], it became possible to predict when limit cycles might occur
and also to predict their amplitudes and frequency of oscillation. The method
is not foolproof [6] but has proved sufficiently reliable to enable its use in our
non-linear control paradigms. Once a limit-cycle starts, control of the affected
system is lost. Changing the amplitude of the input signal will often have no
effect. ‘Even removing all input signals will usually have no effect. Once it has
started, a limit cycle is self-sustaining and usually the only way to stop it is to
remove all power and shut down the system.

Up to now, the only way in which the unwanted oscillation could be avoided
was to make sure that the amplitude of the input or feedback systems reside
outside certain critical ranges or, more drastically, to redesign the system itself.
Having to use signals within limited ranges of amplitude can seriously curtail
the performance of a system but sometimes it has been a price that has had
to be accepted. Re-designing the very architecture of a system has not usually
been an option.

A new method is presented in this paper which avoids the necessity of re-
designing the system itself by enabling the characteristics of the non-linearity to
be adjusted to either remove the conditions in which the unwanted oscillations
occur or to move them into regions of error signal amplitude in which they no
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longer present operational problems.

2 The Basic Cancellation Method

The basic method can be divided into three parts: (i) the derivation of the non-
linear function that describes the undesirable non-linear effects which are to be
removed, (ii) combining the Nyquist graph of the linear part of the system with
the describing function in order to compare the predicted non-linear behaviour
with that of the actual (to check that the derived describing function is correct)
and (iii) the design of the inverse function which can then be inserted into the
original system and so remove the unwanted non-linear effects.

2.1 The describing function

To simplify the approach only those non-linearites which produce real describ-
ing functions have been considered in this paper. Although this has excluded
systems which possess memory the method is still applicable to them. How-
ever, as such non-linearities produce complex describing functions they require
a three dimensional graphical approach which would complicate this initial pre-
sentation unnecessarily. To derive the describing functions an algorithm [7] was
used, which is based on the standard frequency-domain graphical techniques [8].
This approach has been summarized in the appendix.

2.2 Predicting the behaviour of the non-linear system

If the linear part of the system is represented by the transfer function G(jω),
where ω represents the frequency of the signal, and the describing function of the
non-linear part is represented by N(X,ω), in which X represents the amplitude
of the signal then, for the system to remain stable, either the locus G(jω) must
keep the entire locus −1/N(X,ω) on the right or the inverse locus 1/G(jω) must
keep the locus −N(X,ω) on the left (or must completely enclose the whole of
the locus) [3]. For our work, the use of the inverse Nyquist diagram turned out
to be far more convenient because it avoided the graphs going off to infinity at
crucial positions.

If a non-linearity was described by a function which was entirely real, op-
posed to complex,then its locus would lie entirely along the real axis. If an
inverse Nyquist diagram was superimposed on this graph then the two loci
could only intersect at one frequency position along the Nyquist locus - where
they crossed on the real axis. This means that a system which possessed a de-
scribing function which was real but so convoluted that it crossed the real axis
several times could have multiple limit-cycles but they would all possess the
same frequency. However, they would occur at different signal amplitudes. The
traditional way of showing the superposition of the two loci, by plotting their
amplitudes on real/imaginary axes does not show the multiple crossings of the
loci. The alternative graph showing the signal amplitude against the Nyquist
and describing function amplitudes, Fig.2, gives a much clearer picture of what
is happening. On this diagram it can be seen that the loci crossed three times.
Limit-cycles occurred at points A and C. Point B is a critical point, if the signal
amplitude x exceeds this value then the system will immediately sweep around
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to the second limit-cycle even though the signal amplitude is lower than the
apparently required value.

2.2.1 Interactions between limit-cycles

The switching between limit-cycles takes place in an entirely random fashion
and cannot be predicted. It is an example of chaotic behaviour; in fact the
phase-plane portrait of this interaction between two limit-cycles is an example
of the Lorenz butterfly effect. Furthermore, it is perfectly possible to design
a system which has multiple limit-cycles. Provided that these limit-cycles are
sufficiently close to each other there will be spontaneous cascaded switching
between them. The phase-plane portrait in this case will be a butterfly with as
many wings as there are limit-cycles.
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Figure 2: Superposition of real describing function and Inverse Nyquist loci

2.3 Can an inverse describing function be designed?

It has often been stated that it is impossible to develop a perfect inverse of
a non-linear system,[9],[10],[11] because the principle of superposition did not
apply. Whilst it is true that an analytical solution may not be easy to find, it
is certainly possible to find a geometrical solution to any problem which can
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Figure 3: Dead-zone plus linearity with its mirror image, Coulomb friction,
about the 45o line

be posed graphically. In any case, often a complete inverse function did not
have to be found all: that was necessary was that the shape of the native
describing function should become modified sufficiently for it to no longer cross
the inverse Nyquist locus. If a ramp input was applied to an open-loop system
which contained an embedded non-linearity then the output signal would be
representative of that non-linearity. If a perfect inverse of the non-linearity
was then placed in series in the open-loop the the output should simply be the
same as the original ramp input. All such inverse have to do is to nullify the
instantaneous gain introduced by the original non-linearity at each point along
its path. So such inverses are simply the mirror images of the original non-
linearities about the unit ramp. One result which follows immediately from this
realization is that Coulomb friction, or the ideal relay effect, is the inverse of
dead-zone and vice-versa, as shown in Fig.3. Furthermore,since the inverse is
simply the mirror image about the 450 line it follows that the inverse function
is simply the original function with the x and y coordinates interchanged, Fig
4.

2.4 The design of an inverse describing function

In its simplest form a real non-linearity can be represented by a series of straight
lines, with gradients K0,K1,K2,K3..., with K0 being the straight line starting
at, or passing through the origin. The junctions between the lines can be rep-
resented by breakpoints P0, P1, P2, P3, ... Breakpoint P0 would lie at the origin
and would only exist if Coulomb friction or the pure relay effect were present.
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Figure 4: approximation to a non-linearity and its inverse: mirror-images about
y = z

From the premise that the inverse of a non-linearity can be represented by
its mirror image about the 450 line, the inverse can be drawn on the same
axes as the original non-linearity, Fig.4. The corresponding slopes of the linear
sections will be represented by K∗

0 ,K
∗
1 ,K

∗
2 ,K

∗
3 , ... and the break-points will

occur at P ∗
0 , P

∗
1 , P

∗
2 , P

∗
3 , ... The crux of the problem resides in finding the values

of Ki and Pi. If theses values can be determined then the inverse values follow
automatically because, from simple geometry:

K∗
i = 1/Ki (1)

P ∗
0 = P0 (2)

Q∗ = Q (3)

and

P ∗
n =

n−1∑
j=1

(Kj−1 −Kj)Pj +Kn−1Pn (4)

2.5 Determining the parameters

If a unit-ramp input can be applied to the open-loop of the system containing the
non-linearity then it is a simple matter to measure the pseudo-linear slopes and
also the positions of intervening break-points. If the open-loop measurements
are not available then information has to be obtained indirectly by means of the
describing functions.

From Fig.2 certain basic features of a non-linearity are immediately obvious:
the gain of the non-linearity near the origin can be measured, as can the position
of the first break point P1. Also, break-points must occur singly between limit
cycle positions and critical points. If a break-point occurs between positions A
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and B on the Inverse Nyquist diagram then if the linear gain is adjusted until
A and B coincide the position of the break point will be found. Similarly, if
a break-point occurs between B and C and the linear gain is adjusted in the
opposite direction until B and C coincide the next break point can be located.
In this way, for a system with multiple limit-cycles,and consequently multiple
break-points, the general shape of the non-linearity can be determined. In the
case where the value of the describing function locus is less than that of the
inverse Nyquist value as the magnitude of the system value x approaches infinity
then the position of the final break-point can be located by adjusting the linear
gain and locating the point at which the magnitude of the final limit-cycle starts
to reduce. This will give the position of the final break-point. The magnitude
of the Inverse Nyquist at these positions will also give an approximate value for
the adjacent lower pseudo-gain of the non-linearity [7] but is likely to be out by
about 10%. If it is preceded by a limit-cycle position (e.g.: point A, Fig.2) then
the reading is likely to be too high; if is is preceded by a critical position (e.g.:
point B, Fig. 2) then the reading will be too low.

3 Discussion and Conclusions

Limitations of the method Although linear graphs have been used to
demonstrate the method it has to be noted that this graphical approach is very
much a simplification which is ONLY valid when dealing with REAL describing
functions. The system only works when there is a one-to-one correspondence
between the input and output stages of the non-linear effect. So graphs which
have a negative slope at some point are not valid because they can lead to
multiple correspondences between input and output. Furthermore if the system
experiences saturation then all reconstruction systems must fail because once
information about a system has been truly lost, as happens at saturation, then
it is gone for ever and any attempt at reconstruction is only ever going to
be guesswork. The full describing function approach when applied to systems
which exhibit memory, which produces complex describing functions, cannot
be demonstrated either by the simple graphical approach or by the simplified
Nyquist/describing function interaction shown in figure 2. The full approach
requires, at the very least, 3-dimensional representations and certainly higher-
order dimensions when rotating non-linearities (as found, for example, in optical
systems) are present. The case of complex, but not rotating, non-linearities is
the subject of a subsequent paper.
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A Appendices

A.1 An algorithm for generating real describing functions

For ease of reference, the basic algorithm for rapidly calculating real describing
functions is presented here. More complete details can be found in [7].

If Coulomb friction or relay action is present start at stage one, otherwise
start at stage two.

Stage One:

(a) If Coulomb friction or relay action is present make 4Q/πX the first term
of the describing function, where Q is the value of the Coulomb friction term.

(b) If dead-zone is also present multiply the above result by√√√√(1−
(
P

X

)2
)

where P is the dead-zone break-point.

Stage Two:
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(a) If saturation is not present make Kn the first term of the describing func-
tion, where Kn is the gain of the last stage of the non-linearity. Or else add it
to the result of stage one.

(b) If saturation is present then omit this term.

Stage Three:

(a) If there are n breakpoints then add n terms of the form

2

π
(Ki−1 −Ki)

arcsin

(
Pi

X

)
+

(
Pi

X

)√√√√(1−
(
Pi

X

)2
) (5)

where
i = 0→ n

Go to end

(b) If saturation is present then change the last of the terms in stage 3(a) to:

2

π
Ki−1

arcsin

(
Pi−1

X

)
+

(
Pi−1

X

)√√√√(1−
(
Pi−1

X

)2
) (6)

where
i = 0→ n

Go to end

end

THE INVERSE ALGORITHM
If dead-zone is present then start at stage one, otherwise start at stage two

Stage One:

(a) If dead-zone is present make 4P ∗
0 /πX the first term of the describing

function, where P ∗
0 is the value of the dead-zone term.

(b) If Coulomb friction or relay action is also present multiply the above result
by √√√√(1−

(
Q∗

X

)2
)

where Q∗ is the value of the Coulomb friction or the relay action.

Stage Two:
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(a) If saturation is not present make K∗
n the first term of the describing func-

tion. (K∗
n is the gain of the last stage of the non-linearity) or add it to the result

of stage one.

(b) If saturation is present then omit this term.

Stage Three:

(a) If there are n breakpoints then add n terms of the form

2

π

(
K∗

i−1 −K∗
i

)arcsin

(
P ∗
i

X

)
+

(
P ∗
i

X

)√√√√(1−
(
P ∗
i

X

)2
) (7)

where
i = 1→ n

Go to end

(b) If saturation is present then change the last of the terms in stage 3(a) to:

2

π
K∗

i−1

arcsin

(
P ∗
i−1

X

)
+

(
P ∗
i−1

X

)√√√√(1−
(
P ∗
i−1

X

)2
) (8)

where
i = 1→ n

Go to end
end
and it follows from the definitions of the terms and from Fig.4 that:

K∗
i = 1/Ki

P ∗
0 = P0

Q∗ = Q

and

P ∗
n =

n−1∑
j=1

(Kj−1 −Kj)Pj +Kn−1Pn

Finally, substituting these values into the preliminary iteration gives the
general result for the inverse algorithm.
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